5,387 research outputs found

    CanalPro EAL Accuracy compared to the Root ZX EAL

    Get PDF
    CanalPro Electronic Apex Locator Accuracy Compared to the Root ZX Electronic Apex locator Benjamin Brown, Garry Myers, Caroline Carrico, Duane Schaefer Department of Endodontics, Virginia Commonwealth University Objectives: Electronic apex locators (EAL) are an effective instrument in measuring the working length of a canal. The Root ZX is considered the gold standard by many. The aim of this research is to compare the accuracy of the CanalPro EAL to the Root ZX. Methods: The actual length of 43 single rooted extracted teeth were measured with a #10 hand file when the tip was visualized at the foramen under a microscope. The EAL was then hooked up to a jig, with the tooth in saline, and a #10 hand file was placed in the canal. The working length was determined by using the 0.5 mm mark on both the CanalPro and Root ZX EAL. Results: With the Root ZX, 74% of the teeth were within 0.5mm of the actual length (32/43). For the CanalPro, 65% were within 0.5mm (28/43). Neither the CanalPro nor the RootZX were deemed equivalent based on the preset equivalence bounds of +/- 0.5mm. Conclusions: According to this study, both the Root ZX and the CanalPro are clinically acceptable for determining the apical limit for root canal therapy when using the ‘0.5’ mark, however it is advised that a MAF or MAC radiograph to confirm that instrumentation and obturation are within the confines of the canal. If using the ‘Apex’ mark on the EAL, then 1 mm should be subtracted from this length to ensure the limit of cleaning, shaping, and obturation are within the confines of the AC

    The biopsychosocial model and hypothyroidism

    Get PDF
    This paper comments on the role and emergence of the biopsychosocial model in modern medical literature and health care settings. The evolution of the biopsychosocial model and its close association with modern pain theory is also examined. This paper seeks to discuss the place of this model with respect to the management of hypothyroidism. This discussion represents a forerunner to a randomised control trial that will seek to investigate the effect of a biopsychosocial-based treatment regime on hypothyroidism

    Fire Protection of Historic Streetscapes

    Get PDF
    This project was sponsored by the National Association of State Fire Marshals to address the issue of fire protection of historic streetscapes. We performed case studies of historic districts with histories of streetscape fires and their response. We also examined towns with successful fire protection programs to determine the most effective methods in protecting historic streetscapes from fire. We recommended educating building owners of risks and protection possibilities, and also stressed the importance of fire inspections and property maintenance

    Internally heated and fully compressible convection: flow morphology and scaling laws

    Full text link
    In stars and planets natural processes heat convective flows in the bulk of a convective region rather than at hard boundaries. By characterizing how convective dynamics are determined by the strength of an internal heating source we can gain insight into the processes driving astrophysical convection. Internally heated convection has been studied extensively in incompressible fluids, but the effects of stratification and compressibility have not been examined in detail. In this work, we study fully compressible convection driven by a spatially uniform heating source in 2D and 3D Cartesian, hydrodynamic simulations. We use a fixed temperature upper boundary condition which results in a system that is internally heated in the bulk and cooled at the top. We find that the flow speed, as measured by the Mach number, and turbulence, as measured by the Reynolds number, can be independently controlled by separately varying the characteristic temperature gradient from internal heating and the diffusivities. 2D simulations at a fixed Mach number (flow speed) demonstrate consistent power at low wavenumber as diffusivities are decreased. We observe convection where the velocity distribution is skewed towards cold, fast downflows, and that the flow speed is related to the length scale and entropy gradient of the upper boundary where the downflows are driven. We additionally find a heat transport scaling law which is consistent with prior incompressible work.Comment: 22 pages, 12 figures, submitted to Phys. Rev. Fluid

    Modeling impact of intertidal foreshore evolution on gravel barrier erosion and wave runup with XBeach-X

    Get PDF
    This paper provides a sensitivity analysis around how characterizing sandy, intertidal foreshore evolution in XBeach-X impacts on wave runup and morphological change of a vulnerable, composite gravel beach. The study is motivated by a need for confidence in storm-impact modeling outputs to inform coastal management policy for composite beaches worldwide. First, the model is run with the sandy settings applied to capture changes in the intertidal foreshore, with the gravel barrier assigned as a non-erodible surface. Model runs were then repeated with the gravel settings applied to obtain wave runup and erosion of the barrier crest, updating the intertidal foreshore from the previous model outputs every 5, 10 and 15 min, and comparing this with a temporally static foreshore. Results show that the scenario with no foreshore evolution led to the highest wave runup and barrier erosion. The applied foreshore evolution setting update is shown to be a large control on the distribution of freeboard values indicative of overwash hazard and barrier erosion by causing an increase (with 5 min foreshore updates applied) or a decrease (with no applied foreshore updating) in the Iribarren number. Therefore, the sandy, intertidal component should not be neglected in gravel barrier modeling applications given the risk of over- or under-predicting the wave runup and barrier erosion

    Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    Get PDF
    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that WZγWZ\gamma production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.Comment: 27 pages, 12 figures, 2 table
    • …
    corecore